
SIT: An accurate, compliant SBOM generator with
incremental construction

Changguo Jia123, Nianyu Li3, Kai Yang3, Minghui Zhou12†
1School of Computer Science, Peking University, China

2Key Laboratory of High Confidence Software Technologies, Ministry of Education, China
3Zhongguancun Laboratory, China

jiachangguo@stu.pku.edu.cn, li nianyu@pku.edu.cn, yangkai@zgclab.edu.cn, zhmh@pku.edu.cn

Abstract—SBOM (Software Bill of Materials) is a compre-
hensive list of components, relationships and metadata associ-
ated with software, essential for ensuring software component
transparency in the software supply chain. The complexity of
SBOM and the massive workload of writing SBOMs call for
the assistance of automation. However, existing automated tools
excessively rely on parsing dependency manifest and source
code without verifying the accuracy of the information. Worse,
existing SBOM generators sometimes fail to yield a specification-
compliant SBOM. Additionally, existing SBOM generators can
not compose a complete SBOM with information that developers
know best and entries hidden in the dependencies’ metadata
in one go. To address the inaccuracy, non-compliance and
incompleteness issues of SBOM generation, we propose SIT, an
accurate, compliant SBOM generator with incremental construc-
tion. Through incremental construction, SIT aggregates manually
maintained SBOMs and dependency SBOMs and exports SBOMs
for editing, enhancing the correctness and completeness of
SBOMs. This capability is built on SBOM IR, a flexible inter-
mediate format that consolidates essential information and acts
as a bridge for software representations. By integrating SBOM
IR with official SBOM JSON schemas, SIT ensures all generated
SBOMs are compliant to SBOM specifications. Additionally, SIT
enhances SBOM accuracy with cross-validation, resolving incon-
sistencies with the real environment. SIT is publicly available at
https://github.com/osslab-pku/SIT, and a demonstration video
can be found at https://youtu.be/LbzslijVPLc.

Index Terms—Software Maintenance, Software Process, SBOM

I. INTRODUCTION

Modern software applications often depend on numerous

third-party components [1], which can introduce security vul-

nerabilities that affect the final product [2]. SBOM (Software

Bill of Materials) addresses this issue by recording detailed

information about the software, including its metadata and

dependencies, thus enhancing supply chain transparency [3].

To have humans producing SBOMs by hand is an un-

reasonable, time-consuming, and error-prone task. Yet, the

full automation of SBOM production is a process that poses

many challenges [4]. Existing SBOM generators suffer from

limitations in the following aspects. Incompleteness: Some

data fields, such as homepage, cannot be captured solely

by SBOM generation tools. As a result, incomplete SBOMs

can hinder software transparency and effective management.

Merging well-maintained SBOMs or exporting sub-SBOMs

† Corresponding Author

for modification offers a practical solution, yet tools for merg-

ing and exporting are currently unavailable. Non-compliance:

Due to complex SBOM specifications and unreliable third-

party libraries, many tools fail to generate compliant SBOMs.

Such SBOMs compromise trust of users, even leading to

potential legal issues. Inaccuracy: Research indicates signif-

icant performance variations among different SBOM tools in

their dependency detection accuracy in complex supply chains.

This inconsistency can lead to inaccurate SBOMs, which

undermines the security and transparency of the software

supply chain [5].

To address these challenges, we propose SIT, which en-

hances SBOM generation by incremental construction, SBOM

IR (Intermediate Representation) and validation against de-

velopment environment. SIT focuses on Python ecosys-

tem, one of the top-three languages by most notable met-

rics. Through incremental construction, SIT leverages well-

maintained SBOMs and manually exported corrections to

produce the most complete SBOMs. SIT also introduces

SBOM IR and makes format conversions through official

JSON schemas, ensuring the compliance of produced SBOMs.

The accuracy of generated SBOMs is further improved by

performing double cross-validation on dependencies and sup-

porting all mainstream package managers.

In particular, based on automatically generated SBOMs, SIT

incrementally constructs more complete SBOMs by merging

well-maintained SBOMs that provide additional verified in-

formation and exporting sub-SBOMs for modifications and

enhancements. In order to merge and export SBOMs, SIT

constructs SBOM relationship graphs based on directionality

and transitivity of relationships, which can then be modified

and recombined to form a new SBOM. In this way, SIT

can iteratively make full use of existing detailed SBOMs to

produce the most complete SBOMs.

SIT’s SBOM IR is built on the widely adopted SPDX

and CycloneDX specifications, enabling developers to fill out

entries without comprehensive knowledge of SBOM specifi-

cations. By integrating SBOM IR with official SBOM JSON

schemas, SIT successfully establishes a standardized process

for format conversion and data integration with schema vali-

dation, ensuring that no non-compliant SBOM documents are

produced.

To mitigate the accuracy limitation of existing SBOM gen-

erators, SIT integrates all the information, including package

managers, source code, development environments, and local

pip caches. In addition, SIT performs cross-validation on

dependencies to ensure SBOM accuracy.
To check the completeness, compliance and accuracy of

SIT’s SBOM production, we perform a series of automatic

and manual evaluations on the generated SBOMs.
In summary, the main contributions of this paper are as

follows:

• We propose SIT, which incrementally constructs com-

plete SBOMs by merging or exporting them, addressing

data fields that are difficult to analyze. By integrating

SBOM IR with official SBOM JSON schema validation,

we unify and simplify SBOM generation process and

ensure the compliance of resulting SBOMs. Additionally,

we enhance SBOM generation accuracy by performing

double cross-validation on dependencies.

• We’ve made SIT open source and packaged it in Docker

for user convenience. Additionally, we design an exper-

iment to demonstrate the accuracy of SBOMs generated

by SIT, and manually verify the completeness and com-

pliance of SBOMs after incremental construction.

II. BACKGROUND AND RELATED WORK

In the landscape of SBOM tools, SBOM generation is the

most commonly supported feature [6]. Our research focuses

on tools that generate SBOMs for Python packages. Despite

Python’s prominence, existing SBOM generation tools for

Python face the following challenges:

• Incompleteness: Certain data fields are difficult for

SBOM generation tools to capture, causing further in-

completeness.

• Non-compliance: SBOMs generated do not comply with

the target SBOM specification.

• Inaccuracy: SBOMs generated by these tools contain

dependencies that are inconsistent with the dependencies

installed in the real environment.

Since dependency management is one of the main use cases

for SBOMs [7], it’s important that dependencies recorded

in SBOM are accurate. Unfortunately, SBOMs generated

by current tools often deviate significantly from the actual

dependencies, with accuracy of less than 75%. A detailed

examination reveals the following issues with existing SBOM

tools:

• Generators often confuse test, build, and development

dependencies with runtime dependencies, as seen in tools

like cdxgen.

• Packages not present in the development environment

frequently appear in the SBOM, particularly in SBOMs

generated by cdxgen.

• The requirements.txt file may list either all dependencies

or only direct ones, but some generators, like sbom-tool,
treat all entries indiscriminately as direct dependencies.

All these issues stem from the fact that current tools

primarily rely on package managers and source code without

validating the accuracy of all these information.

Additionally, we find that existing tools fail to analyze all

possible package managers in Python. For example, PDM, the

third most popular Python package manager on GitHub by

star count, is not supported by any tool. This oversight can

potentially cause inconvenience to developers.

Even worse, SBOMs generated by these tools do not com-

ply with SBOM specifications. For instance, in CycloneDX

SBOMs generated by Scancode, value in properties may

sometimes be a list, whereas the CycloneDX specification

mandates it should be a string. Such discrepancies introduce

significant security risks during the use and distribution of

SBOMs.

After a thorough investigation, we find that when it comes

to integrating information into required SBOM formats, these

tools primarily rely on two methods:

1) Developers constructing custom SBOM libraries them-

selves.

2) Using third-party SBOM libraries mainly from SBOM

tool center.

Due to developers’ limited knowledge of SBOM spec-

ifications, the first method often leads to errors, as seen

with Scancode’s issues. Contrary to expectations, the second

method also introduces errors. For instance, cyclonedx-python-
lib fails to support components and services in metadata.tools.

Essentially, both approaches translate the SBOM specifi-

cation into a second-hand tool before use, which inherently

increases the risk of errors in the resulting SBOM documents.

As a supplement, certain fields, such as the homepage, are

indeed challenging for SBOM generation tools to analyze.

According to our research, none of the SBOM generation tools

we test are able to successfully identify the homepage for all

packages.

III. TOOL FEATURES

In order to address the incompleteness, non-compliance

and inaccuracy of generated SBOMs mentioned before, SIT

has made optimizations targeting each of these three aspects.

Incremental construction is performed by SIT to enhance the

completeness of SBOMs. The combination of SBOM IR and

official SBOM schema validation ensures the production of

compliant SBOMs. Double cross-validation of dependencies

improves SBOM accuracy.

A. Incremental Construction

SIT achieves incremental construction by exporting sub-

SBOMs for modification and merging well-maintained

SBOMs. When exporting and merging, SIT first analyzes

given SBOM documents by constructing an internal set of

component relationship graphs for each document. In this way,

issues of SBOM merging and exporting are translated into

operations such as modification and deletion of relationship

graphs.

Due to the complexity of relationship fields in SBOMs

(e.g. SPDX has 45 types of relationships), this task presents

a substantial challenge. We begin by collecting all potential

relationship types found in existing SBOM standards, such as

dependsOn and ancestorOf. Then, we classify these relation-

ships based on their properties as follows:

1) Directionality

When an SBOM includes a relationship like A ancesto-
rOf B, A must be included in B’s SBOM, but not vice

versa. Such relationships are considered unidirectional,

from B to A. Of course, there are also bidirectional

relationships requiring both components to be included

in each other’s SBOMs.

2) Transitivity

When an SBOM states A dependsOn B and B dependsOn
C, then B and C should be included in A’s SBOM.

This means that such relationships are transitive, making

C a transitively reachable node from A. For transitive

relationships, SBOM for root node A should include all

of A’s transitively reachable nodes.

Based on these properties, SIT constructs a set of rela-

tionship graphs for each SBOM. When exporting an SBOM,

SIT uses BFS (Breadth First Search) to extract the subgraphs

of specified node ID. It then organizes all the information

and exports the SBOM. When merging an SBOM, SIT first

constructs the set of relationship graphs from the given SBOM

document. Then it compares this new set with the original

relationship graph set. Through operations such as modifying

nodes or changing edges, SIT merges the original graphs

with the second graphs. After consolidating the information,

it generates the final set of graphs, from which the resulting

SBOM can be constructed.

B. SBOM IR and Schema Validation

Considering the inconvenience caused by complex SBOM

specifications, we design SBOM IR. SBOM IR is a transitional

and informal form that contains all the data fields required by

common SBOM formats1. Based on SPDX and CycloneDX,

the most widely used SBOM specifications [8], we construct

a one-to-one mapping between SBOM IR and SBOM speci-

fications to streamline compatibility and integration.

To ensure the accuracy of the IR, we carefully compare

all the data fields across SBOM specifications. For those that

are common fields in all specifications, we will keep them

as reserved IR data fields. When it comes to similar data

fields across specifications, we will make careful distinctions

within the IR. For example, cdx2spdx tool incorrectly maps

CycloneDX’s supplier to SPDX’s creators, despite their dif-

ferent meanings. SBOM IR introduces creator with detailed

classifications of data types to accurately map to SPDX’s

creators and CycloneDX’s manufacturer, authors, and tools,

ensuring precise correspondence and strict compliance.

When encapsulating the mapping between IR, SPDX and

CycloneDX into classes, we use the SPDX and CycloneDX

JSON schemas provided by SBOM standards developers. This

approach allows us to validate whether a given SBOM docu-

ment complies with the required specifications, thus preventing

the creation of invalid SBOM documents. In addition, we

1We focus on SPDX and CycloneDX

Python
Project

LICENSE

COPYRIGHT

xxx.py

xxx.py

xxx.py

requirements.txt
pyproject.toml

...

Env

meta file

pip cache

xxx.py

xxx.py

for each package

IR

SBOM

Checksum

License

Copyright

Third-party
dependencies

Run-time Dependencies
Test Dependencies
Dev Dependencies

...

PyPI

Download
Location

Source
Repository

License

Copyright

Third-party
dependencies

Run-time Dependencies
Test Dependencies
Dev Dependencies

...

cross-validation

Fig. 1. Overview of SIT’s SBOM generation pipeline.

provide a Pydantic model and JSON schema for SBOM IR to

help developers verify whether they have filled in data fields

accurately.

SBOM IR serves as the basis of various tasks, including

SBOM generation, conversion, and mergence. For example,

SBOM IR enables conversion between different SBOM for-

mats. When converting SBOM formats, SIT first converts the

given SBOM into SBOM IR, then converts the IR into targeted

SBOM format.

C. Double Cross-Validation of Dependencies

SIT’s SBOM generation pipeline is represented as a flow

chart in Figure 1. Information from package managers, source

code, development environment and pip caches is collected

altogether and then cross-validated twice, resulting in accurate

and reliable SBOMs.

When analyzing Python packages, SIT starts by statically

scanning Python source code to identify dependencies, which

are then cross-validated with package managers. Considering

the lag of package managers [9], we prioritize dependencies

from the code scan. Based on naming conventions and in-

formation provided by package managers, dependencies are

categorized into types like runtime dependencies and test

dependencies.

After completing the preliminary data collection, we pro-

ceed to cross-validate these details against the actual develop-

ment environment, which involves identifying and excluding

any software packages that do not exist in the development

environment. Through cross-validation, we ensure that the

project dependency information is fully aligned with the real-

world development settings.

IV. EVALUATION

To demonstrate that SBOMs generated by SIT are accurate

and SBOMs incrementally constructed by SIT are compliant

and more complete than before, we evaluate them seperately.

Datasets, evaluation code and results are open source on

Zenodo2

2https://zenodo.org/records/13882428

A. Automatically Generated SBOMs

To evaluate the accuracy of dependencies in generated

SBOMs, we first compile a list of SBOM generation tools for

comparison. Initiating our search on GitHub using the topic

”SBOM”, we filter the tools based on the following criterias:

1) Exceed a thousand stars.

2) Capable of generating an SBOM that includes project

dependencies.

3) Support analysis of Python projects.

4) Be an open-source project.

5) Can be run as a command-line tool.

6) Can generate SBOMs independently without relying on

the API of other tools.

This process yields 3 SBOM tools: Syft3, sbom-tool4, and

cve-bin-tool5. Additionally, we select two tools that works with

Python from the official SPDX and CycloneDX tool centers:

cdxgen6 (the one with the most stars) and cyclonedx-python7

(the only tool focused on the Python ecosystem). The latest

stable releases as of August 2024 are used for the evaluation.

Eight GitHub projects were selected as the subjects for tool

analysis: five projects that depend on more than 60 packages

and three projects with fewer dependencies. By including both

large and small projects, we aim to comprehensively test the

accuracy of dependency analysis across different SBOM tools.

To compare dependencies in SBOMs generated by those

tools and SIT, we use pipdeptree, a highly recommended

tool for analyzing Python environment dependencies according

to Stack Overflow. After getting the results analyzed by

pipdeptree, we also manually review and correct depen-

dencies analyzed by pipdeptree to minimize errors. Using

these dependencies as ground truth, we compare them with the

dependencies included in the SBOMs generated by selected

SBOM tools.

Fig. 2. Precision and recall of SBOM generators.

3https://github.com/anchore/syft
4https://github.com/microsoft/sbom-tool
5https://github.com/intel/cve-bin-tool
6https://github.com/CycloneDX/cdxgen
7https://github.com/CycloneDX/cyclonedx-python

The PR graph is presented in Figure 2. It clearly demon-

strates that SIT achieves significantly higher accuracy than all

current tools, outperforming them by approximately 10%.

B. Incrementally Constructed SBOMs

To assess the compliance and completeness of SBOMs

generated through incremental construction, we first collect

10 SBOMs from the official SPDX repository and 16 from

CycloneDX, taking them as samples to test SIT. Then we per-

form merging and exporting seperately on these 26 SBOMs,

getting 650 merged SBOMs and 26 exported SBOMs. Two

authors individually check and validate the resulting SBOMs

and the original SBOMs. All resulting SBOMs are compliant

to specified SBOM specification and contain necessary rela-

tionships, components and metadata. No issues are found.

V. CONCLUSION

We design SIT which enhances SBOM generation by incre-

mental construction, SBOM IR and double cross-validation.

SIT greatly improves the completeness, compliance and accu-

racy of produced SBOMs. Looking ahead, we aim to support

more programming languages in SIT and continuously update

SBOM IR to support additional SBOM specification versions.

VI. ACKNOWLEDGEMENT

This work is sponsored by the National Natural Science

Foundation of China 62332001 and the SBOM Platform

Project for Open Source Community.

REFERENCES

[1] R. Cox, “Surviving software dependencies,” Communications of the ACM,
vol. 62, no. 9, pp. 36–43, 2019.

[2] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife
collection: A review of open source software supply chain attacks,” in
Detection of Intrusions and Malware, and Vulnerability Assessment: 17th
International Conference, DIMVA 2020, Lisbon, Portugal, June 24–26,
2020, Proceedings 17. Springer, 2020, pp. 23–43.

[3] T. N. Telecommunications and I. Administration, “The minimum
elements for a software bill of materials (sbom),” 2021. [Online].
Available: https://www.ntia.doc.gov/files/ntia/publications/sbom minim
um elements report.pdf

[4] M. Balliu, B. Baudry, S. Bobadilla, M. Ekstedt, M. Monperrus, J. Ron,
A. Sharma, G. Skoglund, C. Soto-Valero, and M. Wittlinger, “Challenges
of producing software bill of materials for java,” IEEE Security & Privacy,
2023.

[5] M. F. Rabbi, A. I. Champa, C. Nachuma, and M. F. Zibran, “Sbom
generation tools under microscope: A focus on the npm ecosystem,” in
Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing,
2024, pp. 1233–1241.

[6] M. Mirakhorli, D. Garcia, S. Dillon, K. Laporte, M. Morrison, H. Lu,
V. Koscinski, and C. Enoch, “A landscape study of open source and
proprietary tools for software bill of materials (sbom),” arXiv preprint
arXiv:2402.11151, 2024.

[7] T. Stalnaker, N. Wintersgill, O. Chaparro, M. Di Penta, D. M. German,
and D. Poshyvanyk, “Boms away! inside the minds of stakeholders:
A comprehensive study of bills of materials for software systems,” in
Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, 2024, pp. 1–13.

[8] S. Nocera, S. Romano, M. Di Penta, R. Francese, and G. Scanniello,
“Software bill of materials adoption: a mining study from github,” in 2023
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2023, pp. 39–49.

[9] Y. Peng, R. Hu, R. Wang, C. Gao, S. Li, and M. R. Lyu, “Less is more?
an empirical study on configuration issues in python pypi ecosystem,” in
Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, 2024, pp. 1–12.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

